

Documentation of serverPKI

serverPKI is a tool to issue, renew and distribute SSL certificates for internet
servers without manual intervention.
Distribution to target hosts and reloading of server configuration
is done via ssh/sftp. Configuration and cert/key data is stored in a relational
database.

	serverPKI
	What

	Prerequisites

	Sponsored

	Changelog
	0.9.0 (2017-07-18)

	0.9.1 (2017-07-28)

	0.9.2 (2018-03-19)

	0.9.3 (2019-02-11)

	0.9.4 (2019-02-21)

	0.9.6 (2020-03-11)

	0.9.10 (2020-08-06)

	0.9.11 (2020-08-11)

	Installation and Configuration
	Installation

	Configuration
	Pathes

	X509atts

	DBAccount

	Misc

	Tutorial
	Setting up encrypted key storage

	Creating our first local certificate

	Creating our first Let’s Encrypt certificate

	The database
	Model

	Tables

	Views

	Functions

	Operation
	Management of configuration
	Creating and deleting Disthosts

	Creating and deleting Jails

	Creating and deleting of other objects

	Management of cert instances

	State table of cert instances

Indices and tables

	Index

	Search Page

serverPKI

[image: Latest Version]
 [https://pypi.org/project/serverPKI/][image: Latest Docs]
 [https://serverpki.readthedocs.io/en/latest/]
	serverPKI

	Python PKI for internet server infrastructure

	Copyright

	Copyright (c) 2015-2020 Axel Rau axel.rau@chaos1.de

	License

	GPLv3 [http://www.gnu.org/licenses/]

	Homepage

	https://github.com/mc3/serverPKI

	Documentation

	https://serverpki.readthedocs.io

What

serverPKI is a tool to issue, renew and distribute SSL certificates for internet
servers. Distribution to target hosts and reloading of server configuration
is done via ssh/sftp. Configuration and cert/key data is stored in a relational
database.

serverPKI includes support for

	local CA

	LetsEncrypt CA (supports only acme v2 api, see https://letsencrypt.org/docs)

	FreeBSD service jails via ssh access to host

	publishing of DANE RR in DNS, using BIND 9 and TLSA key rollover (see RFC 6698)

	controlling DNS zone info for LetsEncrypt challenges und TLSA RR via dynamic
DNS updates (recommended) or via zone files.

	unattended operation via cronjob

	extensive logging

	alerting via mail

Prerequisites

	PostgreSQL 12+ server

	The contrib utilities from the PostgreSQL distribution are required
(serverPKI needs the citext extension for case insensitive indexes)

	a DB account with super user privileges [dba] or assistance of a DB admin
(serverPKI uses a dedicated DB user [pki_op] and a dedicated DB)

	authentication record in pg_hba.conf to allow access of pki_op from local
host (client cert authentication recommended)

	PostgreSQL 12+ client installation on local host

	bind 9 DNS server (9.16+ should be used)

	If DNS is handled via zone files,

	serverPKI must be run on the master (hidden primary) DNS server.

	signed Zones being maintained by serverPKI must be run in auto-dnssec
maintain + inline-signing operation mode.

	Zone files must be writable by serverPKI process to allow publishing of
acme_challenges and TLSA resource records for DANE

	Python 3.7+ must be installed (tested with Python 3.8.3)

	Running serverPKI in a Python virtual environment is recommended for ease of
upgrading. The author uses virtualenvwrapper.

Sponsored

This project is being developed with the powerful Python IDE PyCharm, which is
particularly useful during remote debugging sessions.
A professional license has been granted by JetBrains, https://www.jetbrains.com/.

Changelog

0.9.0 (2017-07-18)

	Initial public release.

0.9.1 (2017-07-28)

	Documentation at https://serverpki.readthedocs.io

0.9.2 (2018-03-19)

	Python 3.6 supported

	Omit disabled certs from list of certs to be renewed.

	BUGFIX: Bind place to jail not to disthost (disthost->jail->place)

	Do not expire certs one day before “not_after” but one day after instead

	Allow “distribute only” with –renew-local-certs

	
	New Feature: –renew-local-certs REMAINING_DAYS

	Renews local certs, which would expire within REMAINING_DAYS.
Gives a nice tabular display of affected certs

	New Feature: Allow encrypted storage of keys in DB

2 new action commands: –encrypt-keys and –decrypt-keys

New configuration parameter: db_encryption_key

	
	Upgrading:

	Create new table Revision in DB - see install/create_schema_pki.sql:

pki_op=# CREATE TABLE Revision (
id SERIAL PRIMARY KEY, -- 'PK of Revision'
schemaVersion int2 NOT NULL DEFAULT 1, -- 'Version of DB schema'
keysEncrypted BOOLEAN NOT NULL DEFAULT FALSE -- 'Cert keys are encrypted'
);
pki_op=# INSERT INTO revision (schemaVersion) values(1);

Then create passphrase and encrypt DB (see tutorial).

0.9.3 (2019-02-11)

	Python 3.7 supported

	With pyopenssl 19 on FreeBSD 12 (which has OpenSSL 1.1.1a-freebsd in base
system), paramiko 2.4 works out-of-the-box. No longer need for paramiko
workarounds like package paramiko-clc.

	Now recovering from “Letsencrypt forgetting authorizations”, which happened
at begin of 2019.

	Fixing bug where one letsencrypt authorization was requested multiple times
(happened once per distribution target).

	Being more patient with Letsencrypt’s response to challenges

0.9.4 (2019-02-21)

	INCOMPATIBLE CHANGE in configuration file syntax: dbAccounts keyword has been
changed from ‘pki_dev’ to ‘serverpki’. See install example_config.py

	Multiple local CA certs for CA cert roll over

	Increased hash size to 512 (CA cert) resp. 384 bits (server/client cert)

	Cert (including CA cert) export by cert serial number implemented.

	Listing of cert meta info now also lists (issued) cert instances.

	requirement for PyOpenSSL removed.

	BUGFIXES e.g. Allow to enter 1st cert into empty CertInstances table

0.9.6 (2020-03-11)

	Supporting and (requiring) V2 of ACME protocoll.

	New fields in DB for upcoming support of certs with elliptic algorithm.
(in addition to rsa). Run install/upgrade_to_2.sql in psql, connected to pki DB.

0.9.10 (2020-08-06)

	New object oriented architecture, abstracting relational model

	Support for dynamic DNS update mode of operation supported

	Support for dual algo certs (rsa + ec)

	Support for OCSP_must_staple attribute

	New config file format

	BUGFIXES mainly in ACMEv2 handshaking code

	For upgrade run install/upgrade_to_{3456}.sql in psql, connected to pki DB.

0.9.11 (2020-08-11)

	Using automatoes 0.9.5. Got hotfix from automatoes maintainer

Installation and Configuration

Installation

	Installation of PostgreSQL client package:

	Installation of PostgreSQL server (if none exists) and related packages on DB server host:

pkg install databases/postgresql12-server
pkg install databases/ip4r

	Installation of Python packages from PyPI:

pip install serverPKI

	Creation of DB user and DB

host db1, port 2222, user dba and user pki_op are examples. dba must be pgsql superuser.
In scripts create_schema_pki.sql and create_triggers_pki.sql are GRANT statements which allow
usage of objects by user serverPKI. To change this, you must edit those scripts.
Create ~/.pgpass or client cert in ~/.postgresql:

psql -h db1 -p 2222 -U dba postgres
postgres=> CREATE ROLE pki_op LOGIN CREATEDB;
psql -h db1 -p 2222 -U pki_op postgres
postgres=> CREATE DATABASE pki_op;
psql -h db1 -p 2222 -U pki_op -d pki_op -f install/fresh_install/create_schema_dd.sql
psql -h db1 -p 2222 -U pki_op -d pki_op -f install/fresh_install/create_extension_citext.sql
psql -h db1 -p 2222 -U pki_op -d pki_op -f install/fresh_install/create_schema_pki.sql

optional (usefull examples for demo):
psql -h db1 -p 2222 -U pki_op -d pki_op -f install/fresh_install/load_testdata.sql

psql -h db1 -p 2222 -U pki_op -d pki_op -f install/fresh_install/create_triggers_pki.sql
#
psql -h db1 -p 2222 -U pki_op
pki_op=> set search_path to pki,dd;
SET
pki_op=> \d
 List of relations
 Schema | Name | Type | Owner
--------+-----------------------+----------+-----------
 pki | certificates | table | pki_op
 pki | certificates_id_seq | sequence | pki_op
 pki | certificates_services | table | pki_op
 pki | certinstances | table | pki_op
 pki | certinstances_id_seq | sequence | pki_op
 pki | certkeydata | table | pki_op
 pki | certkeydata_id_seq | sequence | pki_op
 pki | certs | view | pki_op
 pki | certs_ids | view | pki_op
 pki | disthosts | table | pki_op
 pki | disthosts_id_seq | sequence | pki_op
 pki | inst | view | pki_op
 pki | jails | table | pki_op
 pki | jails_id_seq | sequence | pki_op
 pki | places | table | pki_op
 pki | places_id_seq | sequence | pki_op
 pki | revision | table | pki_op
 pki | revision_id_seq | sequence | pki_op
 pki | services | table | pki_op
 pki | services_id_seq | sequence | pki_op
 pki | subjects | table | pki_op
 pki | subjects_id_seq | sequence | pki_op
 pki | targets | table | pki_op
 pki | targets_id_seq | sequence | pki_op
(24 rows)

serverpki=> \q

Configuration

Copy install/example_config.py to /usr/local/etc/serverPKI/serverPKI_config.py
or to VIRTUAL_ENV/etc/serverPKI_config.py and edit the copy. The config file
is in ini file format with nested sections.

The following variables can be set:

Pathes

Section containg filesystem path information

	home

	Root of the work area and credential storage, usually somewhere at var.
This variable must be set to a save place in order to use serverPKI

	db

	Some credentials stored here, like:

	ca_cert, ca_key

	Cert and key of the local (internal) CA, in case, there exists one
when you begin with serverPKI. Will be imported into DB with issuence
of 1st local cert. The flat files can be deleted then. Not needed, if
local CA cert created with “serverPKI –issue-local-CAcert”.

	db_encryption_key

	All keys in DB are encrypted with this key.
After setting this up, encrypt keys in DB:

operate_serverPKI --encrypt-keys -v

Before changing the passphrase, decrypt all keys:

operate_serverPKI --decrypt-keys -v

	le_account

	Credentials of Lets Encrypt account in json format.
See manuale register in tutorial.

	work

	Work direcory

	work_tlsa

	TLSA resource records are being accumulated here for named zone update.

	tlsa_dns_master

	Host of DNS master. Empty means: Local host. Must be empty for now.
Will be used with ddns with remote master in the future.

Next 6 variables are for historical DNS control via zone files and should not
be used for new installations:

	zone_file_root

	
	zone files are kept in DSKM format:

	zone_file_root/example.com/example.com.zone

	dns_key

	rndc key for triggering named reload.

	zone_tlsa_inc_mode, zone_tlsa_inc_uid, zone_tlsa_inc_gid

	file permission and ownership for files, incuded by zone files.

	zone_file_include_name

	The filename of the file, included from zone file with the challenges.

	ddns_key_file

	The filename of a named dynamic dns key file, used to secure dns update
transactions.

X509atts

Section of local X509 certificate standard attribute defaults

	names and extensions

	Cert fields used for CA cert and server/client certs.

	lifetime and bits

	are used for server/client certs

DBAccount

Configuration of account data and credentials for the PostgreSQL DB.
Passwords may be stored in pki_op’s HOME in HOME/.pgpass or
client certs in HOME/.postgresql.crt and HOME/.postgresql.key

	dbHost

	host name of DB server

	dbPort

	port number of DB instance

	dbUser

	DB role name, used for accessing the DB

	dbDbaUser

	Role name for tasks requiring super user rights. Empty, if person
who runs program is DBA

	dbSslRequired

	If “yes” then connecting will be made with TLS

	dbDatabase

	name of database, used for serverPKI (contains schemas dd and pki)

	dbSearchPath

	search_path set at login

	dbCert

	path of file containg cert for TLS

	dbCertKey

	path of file containg key for TLS

Misc

Section with miscellaneous config parameters

	SSH_CLIENT_USER_NAME

	user name on target hosts for cert/key distribution

	LE_SERVER

	
	URL of Lets Encrypt server, either (for testing):

	‘https://acme-staging-v02.api.letsencrypt.org’

	or (for production):

	‘https://acme-v02.api.letsencrypt.org’

	LE_EMAIL

	e-mail address for letsencrypt.org registration, used for notifications
by LE

	LE_ZONE_UPDATE_METHOD

	Zone update method for challenges, either ‘ddns’ (the default) for
dynamic updates or ‘zone_file’ for updates via zone file)

	LOCAL_CA_BITS LOCAL_CA_LIFETIME

	Number of bits and lifetime of local CA cert.

	SUBJECT_LOCAL_CA

	Subject name of local CA in table Subjects (may be changed only initially)

	SUBJECT_LE_CA

	Subject name of Lets Encrypt CA in table Subjects (may be changed only
initially)

	PRE_PUBLISH_TIMEDELTA

	New certs are published that many days before they become active (with
2nd TLSA RRs) for rollover

	LOCAL_ISSUE_MAIL_TIMEDELTA = timedelta(days=30)

	E-Mail to administrator will be sent that many days before expiration of
local certs. (Must be issued manually, using pass phrase)

	MAIL_RELAY, MAIL_SUBJECT, MAIL_SENDER and MAIL_RECIPIENT

	Characteristics of mail service for notification mails.

	SYSLOG_FACILITY

	Facility for syslog log messages

serverPKI uses levels DEBUG, INFO, NOTICE and ERR

Tutorial

In the following examples, client certs are used as PostgreSQL authentication method.
su is used to run the commands as user pki_op, who has the client cert installed.
It is assumed that :ref: Configuration of serverPKI has been completed.

Setting up encrypted key storage

Create a new key pair for encryption of cert keys in the DB.:

ssh-keygen -t ed25519 -f db_encryption_key.pem
Find a secure place and configure its path in config parameter.
Convert database into key encryption state:
operate_serverPKI --encrypt-keys

Creating our first local certificate

Create meta data in the DB:

su -l pki_op -c "psql -h db1 -p 2222 -U pki_op serverpki"
serverpki=> set search_path to pki,dd;
serverpki=> select * from add_cert('test.com', 'server', 'local', 'ec', false, 'www.test.com', NULL, NULL, NULL, NULL, NULL);
 add_cert
--
 (server,test.com,local,,www.test.com,,,,,)
(1 row)
serverpki=> \q

Now issue one cert:

su -l pki_op -c "/usr/local/py_venv/test/bin/python3 /usr/local/py_venv/test/bin/operate_serverPKI -C -d -o test.com"
[operateCA started with options all debug verbose create]
[1 certificates in configuration]
[----------- 1 test.com local False None server]
[altname:www.test.com disthost: jail: place:]
[tlsaprefixes of test.com: {}]
[Selected certificates:
['test.com']]
[Creating certificates.]
%No CA cert found. Creating one.
[Please enter passphrase for new CA cert (ASCII only).]
passphrase:
[Please enter it again.]
passphrase:
[CA cert serial 1 with 4096 bit key, valid until 2027-06-05T17:07:22.818955 created.]
[Hash is: 20639CDB63F6A470141F4697919D71EAC85619B09C4056638A92BF43A4BD489F]
[Serial of new certificate is 7523957]
[Creating key (2048 bits) and cert for server test.com]
[Certificate for server test.com, serial 2740072, valid until 2018-05-18T17:07:23.498130 created.]

 # psql -h db1 -p 2222 -U dba postgres
 serverpki=> set search_path to pki,dd;
 SET
 serverpki=# select * from inst;
 id | name | state | not_before | not_after | hash | updated
 ----+----------+--------+--------------------------+---------------------------+--+----------------------------
 1 | Local CA | issued | 2017-05-07 17:07:22 | 2027-06-05 17:07:22 | 20639CDB63F6A470141F4697919D71EAC85619B09C4056638A92BF43A4BD489F | 2017-05-08 17:06:48.654368
 2 | test.com | issued | 2017-05-07 17:07:23.4981 | 2018-05-18 17:07:23.49813 | EBB7CCBEDD38496D3D979C48E9183E1C1E7CC875740BB1711375C248A055E517 | 2017-05-08 17:06:48.654368
 (2 rows)

Creating our first Let’s Encrypt certificate

Create Letsencrypt account:

su -l pki_op -c '/usr/local/py_venv/pki_op_p38/bin/operate_serverPKI -v --register'
[Using config file /usr/local/py_venv/pki_op_p38/etc/serverpki.conf]
[operateCA [pki_op-0.9.10] started with options register verbose]
[43 certificates and CAs ['Local CA'] in DB]
[Registering a new Let's Encrypt Account.
 With URI:https://acme-staging-v02.api.letsencrypt.org
 and e-mail admin@example.org]
Candango Automatoes 0.9.4. Manuale replacement.

You're about to register a new account with e-mail admin@example.org as contact. Continue? [Y/n] Y
Generating a new account key. This might take a second.
 Key generated.
Registering...
 Retrieving terms of agreement ...
 This server requires you to agree to these terms:
 https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf
Agreed? [Y/n] Y
Account https://acme-staging.api.letsencrypt.org/acme/reg/12345678 created.
Wrote account to account.json.

What next? Verify your domains with 'authorize' and use 'issue' to get new certificates.

Last message can be ignored (its meaningless with serverPKI).

Create meta data in the DB:

su -l pki_op -c "psql -h db1 -p 2222 -U pki_op serverpki"
serverpki=> set search_path to pki,dd;
serverpki=> select * from add_cert('martin-frankowski.de.zone', 'server', 'LE', 'NULL', NULL, NULL, NULL, NULL, NULL);
 add_cert
--
 (martin-frankowski.de.zone,LE,,,,,,,)
(1 row)

serverpki=> \q

Now authorize fqdn and issue one cert:

su -l pki_op -c "/usr/local/py_venv/test/bin/python3 /usr/local/py_venv/test/bin/operate_serverPKI -C -d -o martin-frankowski.de"
[operateCA started with options debug only_cert(martin-frankowski.de) verbose create]
[3 certificates in configuration]
[----------- 3 martin-frankowski.de LE False None server]
[altname: disthost: jail: place:]
[tlsaprefixes of martin-frankowski.de: {}]
[Selected certificates:
['martin-frankowski.de']]
[Creating certificates.]
[Requesting challenge for martin-frankowski.de.]
[Calling zone_and_FQDN_from_altnames()]
[/usr/local/etc/namedb/master/signed/martin-frankowski.de]
[zones: {'martin-frankowski.de': ['martin-frankowski.de']}]
[fqdn: martin-frankowski.de]
[Writing RRs: ['_acme-challenge.martin-frankowski.de. IN TXT "i2DtFJ7qT8cWyvIKbcBGLFupLiEkmODHZtK1kFYq7JI"\n']]
[Updating SOA: zone file /usr/local/etc/namedb/master/signed/martin-frankowski.de/martin-frankowski.de.zone]
[Updating SOA: SOA before and after update:
 2017051002 ; Serial number
 2017051101 ; Serial number]
[Reloading nameserver]
server reload successful
[martin-frankowski.de: Waiting for DNS propagation. Checking in 10 seconds.]
[]
[martin-frankowski.de: waiting for verification. Checking in 5 seconds.]
[Authorization lasts until 2017-06-10 08:21:35+00:00]
[martin-frankowski.de: OK! Authorization lasts until 2017-06-10T08:21:35Z.]
[Updating SOA: zone file /usr/local/etc/namedb/master/signed/martin-frankowski.de/martin-frankowski.de.zone]
[Updating SOA: SOA before and after update:
 2017051101 ; Serial number
 2017051102 ; Serial number]
[Reloading nameserver]
server reload successful
[1 fqdn(s) authorized. Let's Encrypt!]
[Creating key (2048 bits) and cert for server martin-frankowski.de]
[Requesting certificate issuance from LE...]
[Certificate issued. Valid until 2017-08-09T07:22:00]
[Hash is: 7C5B315103626D76C2AB14343176F50805A1C94E9CEEE442BCEEC7C8C092B505]

su -l pki_op -c "psql -h db1 -p 2222 -U pki_op serverpki"
serverpki=> set search_path to pki,dd;
serverpki=# select * from certs;
 Subject | Cert Name | Type | authorized | Alt Name | TLSA | Port | Dist Host | Jail | Place
---------+----------------------+-------+------------+--------------+------+------+-----------+------+-------
 CA | Lets Encrypt CA | LE | | | | | | |
 CA | Local CA | local | | | | | | |
 server | martin-frankowski.de | LE | 2017-06-10 | | | | | |
 server | test.com | local | | www.test.com | | | | |
(4 rows)

Time: 5,400 ms
serverpki=# select * from inst;
 id | name | state | not_before | not_after | hash | updated
----+----------------------+--------+--------------------------+---------------------------+--+----------------------------
 1 | Local CA | issued | 2017-05-07 17:07:22 | 2027-06-05 17:07:22 | 20639CDB63F6A470141F4697919D71EAC85619B09C4056638A92BF43A4BD489F | 2017-05-08 17:06:48.654368
 2 | test.com | issued | 2017-05-07 17:07:23.4981 | 2018-05-18 17:07:23.49813 | EBB7CCBEDD38496D3D979C48E9183E1C1E7CC875740BB1711375C248A055E517 | 2017-05-08 17:06:48.654368
 3 | Lets Encrypt CA | issued | 2016-05-23 22:07:59 | 2036-05-23 22:07:59 | A99C1B71DA32ADD9429714F71E740AFDC543C4F7F012A748D24A789B8BF3D6C7 | 2017-05-11 08:21:21.487583
 4 | martin-frankowski.de | issued | 2017-05-11 07:22:00 | 2017-08-09 07:22:00 | 7C5B315103626D76C2AB14343176F50805A1C94E9CEEE442BCEEC7C8C092B505 | 2017-05-08 15:34:20.582733
(4 rows)

The database

Model

	The entity relation diagram shows 10 entities, related to certificates and
their deployment. The normalized schema has rules and triggers to ensure
integrity.

	Common columns - All relations have the following columns:

	id - synthetic primary key

	created - date and time of tuple creation

	updated - date and time of last tuple update

	remarks - arbitrary text

	columns, which together must be unique are in bold

This is the entity relation diagram:

[image: _images/ERD.png]

Tables

	Subjects - holds all the subject names

	name - name of subject

	type - subject type, one of

	‘server’ - server subject

	‘client’ - client (or personal) subject

	‘CA’ - certificate authority

	‘reserved’ - type of a placeholder, initially loaded

	isAltName - true if subject is an alternate name

	certificate - reference to Certificates

	Certificates - one entry per defined certificate (holds cert meta data)

	type - type of certificate, one of

	LE - to be issued by Let’s Encrypt CA

	local - local cert (to be issued by local CA)

	disabled - true means: Do not issue/create or distribute this cert.

	authorized_until:

	if type is ‘LE’: Needing new authorization with Let’s Encrypt
via DNS challenge after this date

	if type is ‘local’: date and time of last mail to admin, to ask him to
issue a new local cert

	encryption_algo - encryption algorithm to be used by certs issued in the future, one of

	rsa

	ec

	rsa plus ec

	ocsp_must_staple - if true then the OCSP staple protocoll will be required by the cert
(and server must be configured to support this)

	Certinstances - issued certificate instances.

	state - state of instance (see State Table), one of

	reserved - being issued

	issued - cert is issued (or renewed)

	prepublished - cert published in DNS (vis TLSA RR) prior to usage

	deployed - cert is distributed and in use by server

	revoked - cert is revoked

	expired - cert is expired

	archived - cert is archived (will be removed soon)

	not_before - start date and time for cert usage

	not_after - end date and time for cert usage

	certificate - reference to cert in Certificates

	cacert - reference to cacert instance in Certinstances, describing
CA which issued this cert

	ocsp_must_staple - True, if this instance requires OCSP must staple

There may be more than one tuple per cert type, if cacerts are renewed.

Here is the state transition diagram:

[image: _images/States.png]

	CertKeyData - the cert/key material (one tuple per algorithm).

	encryption_algo - encryption algorithm, used with this cert (unique together with certinstance)

	rsa

	ec

	cert - the certificate in binary PEM format

	key - the key in binary PEM format (encrypted, if DB encryption in use)

	hash - the binascii presentation of the SHA256 hash of the certificate

	certinstance - reference to cert in Certinstances (unique together with encryption_algo)

	Services - stores service and port combinations for TLSA RR

	name - name of service

	port - tcp/udp port number of service

	TLSAprefix - named zone resource record entry with place holder for hash,
something like:

_443._tcp.{}. 3600 IN TLSA 3 0 1

	Certificates_Services - junction relation between Certificates and Services

	certificate - reference to cert in Cerificates

	service - reference to service in Services

	Jails - One row describes one jail. A jail is a hosted entity on FreeBSD’s
lightweight virtualization environment. serverPKI connects to the jail host
(Disthost) and places certs and keys on the jail, using the filesystem view
of the host.

	name - name of jail

	disthost - reference to the disthost, hosting the jail in Disthosts

	Disthosts - One row per host to which cert and key should be distributed.

	FQDN - fully qualified domain name of disthost

	jailroot - optional path to root of jails on disthost.
If empty, no jails are on this disthost.

	Places - Place, where to deploy cert deployment details, related to one
cert / disthost (or jail) combination.

	name - name of place

	cert_file_type - one of

	‘cert only’ - deploy only cert, no key

	‘separate’ - cert and key are in separate file

	‘combine key’ - cert and key are combined in one file

	‘combine cacert’ - cert is combined with cacert (intermediate if LE),
key is in separate file

	‘combine both’ - cert is combined with both key and cacert

	cert_path - absolute path of cert directory with placeholder ‘{}’ of login

	key_path - absolute path of key, if different from cert_path

	uid - let key file be owened by uid

	gid - let key file be owned by gid

	mode - mode of key file if different from 0o400

	chownboth - set owner of cert file to that of key file

	pglink - link cert / key file to postgresql.crt / postgresql.key

	reload_command - command to reload service after distribution of cert/key.
In case of jail, ‘{}’ is the placeholder for the jail name.

	Targets - binds one place, disthost/jail to a certificate

	distHost - references distHost

	jail - references jail

	place - references place

	certificate - references certificate

	Revision - holds revision of schema and key encryption state of DB

	schemaVersion - Version of database schema

	keysEncrypted - True, if keys are encrypted

Views

Some views simplify common queries. For each view the result columns are listed.

	certs - display meta information about a certificate

	Subject - Subject type

	Cert Name - Subject name

	Type - Type of certificate

	algo - Cert encryption algorithm

	ocsp_ms - Cert ocsp_must_staple attribute

	authorized - authorized until

	Alt Name - Alternative cert name

	TLSA - Service name

	Port - Service port number

	Dist Host - Disthost name

	Jail - Jail name

	Place - Place name

	certs_ids - like certs, but include primary keys of referenced tables

	c_id - cert id

	s1_id - subject id of none-altname subject

	Subject Type - Subject type

	Cert Name - Subject name

	Type - Cert type

	algo - Cert encryption algorithm

	ocsp_ms - Cert ocsp_must_staple attribute

	authorized - authorized until

	s2_id - subject id of Alternative cert name subject

	Alt Name - Alternative cert name

	s_id - service id

	TLSA - Service name

	Port - Service port number

	t_id - target id

	d_id - disthost id

	FQDN - Disthost name

	j_id - jail id

	Jail - Jail name

	p_id - place id

	Place - Place name

	inst - display certificate instances (one row per issued cert instance per algorithm)

	id - serial of cert instance

	name - Subject name

	type - Cert type

	state - State of instance

	cacert - reference to cacert instance in Certinstances, describing
CA which issued this cert

	ocsp_must_staple - if true then the OCSP staple protocol will be required by the cert

	not_before - Start date for cert usage

	not_after - End date for cert usage

	encryption_algo - Cert encryption algorithm

	hash - Hash of cert

Functions

Functions are provided for common operations to abstract foreign key handling.
All arguments are text (mostly case insensitive [=citext]), exceptions are mentioned (e.g. boolean),
to omit an argument, use null.
Functions may be called with select in psql:

serverpki=> select * from add_cert('test.com', 'server', 'local', 'ec', false, 'www.test.com', NULL, NULL, NULL, NULL, NULL);
 add_cert
--
 (server,test.com,local,,www.test.com,,,,,)
(1 row)
serverpki=> \q

	add_cert - add a new cert to the database

	the_name - Subject name

	the_subject_type - Subject type

	the_cert_type - Cert type

	the_encryption_algo - Cert encryption algorithm

	must_staple - if true then the OCSP staple protocoll will be required by the cert

	the_altname - optional Alternative cert name

	the_tlsa_name - optional Service name

	the_tlsa_port - optional Service port number

	the_disthost_name - optional :ref: Name of disthost

	the_jail - optional Jail name

	the_place - optional Place name

	remove_cert - delete a cert and all issued cert instances with there CertKeyData from the database

	the_cert_name - Subject name

	add_altname - add an alternative name to an existing cert in the database

	the_cert_name - Subject name to identify the cert, to which the altname should be added

	the_altname - Alternative cert name to add

	remove_altname - remove an alternative name from the database

	the_altname - Alternative cert name to be removed

	add_service - add an existing service to a certificate

	the_cert_name - Subject name to identify the cert, to which the service should be added

	the_service_name - Service name

	the_port - Service port number

	remove_service - remove a service from a certificate

	the_cert_name - Subject name to identify the cert, from which the service should be removed

	the_service_name - Service name

	the_port - Service port number

	add_target - add a target to a certificate

	the_name - Subject name to identify the cert, to which the target should be added

	the_disthost_name - Disthost name to identify the target

	the_jail - optional Jail name to identify the target

	the_place - optional Place name to identify the target

	remove_target - remove a target from a certificate

	the_cert_name - Subject name to identify the cert, from which the target should be removed

	the_disthost_name - Disthost name to identify the target

	the_jail - optional Jail name to identify the target

	the_place - optional Place name to identify the target

Operation

Operation of the PKI is divided into

	Management of cert configuration, which is done via psql (PostgreSQL command line
utility) because configuration is stored in a database. This meta data describes
things like subject-, alt- name(s), subject- and cert- type, deployment target
(host, jail and path), server reload command and DNS TLSA info (service and port).

	Management of cert instances of configured certs like issue, renewal,
distribution, publishing
and consolidation happens via the operate_serverPKI utility

Management of configuration

Creating and deleting Disthosts

Certs may be distributed to Disthosts.
Disthosts are referenced by Jails and
Targets.

Example of creating and deleting a Disthost:

pki_op=# INSERT INTO disthosts (fqdn, jailroot) values('host-with-jails.on.domain', '/usr/jails');
INSERT 0 1
Time: 269,814 ms
pki_op=# INSERT INTO disthosts (fqdn) values('host-without-jails.on.domain');
INSERT 0 1
Time: 180,044 ms
pki_op=# DELETE FROM disthosts WHERE fqdn in ('host-with-jails.on.domain', 'host-without-jails.on.domain');
DELETE 2
Time: 30,975 ms
pki_op=#

Creating and deleting Jails

Certs may be distributed to Jails on
Disthosts.
Jails are referenced by Targets.

Example of creating and deleting a Jail:

pki_op=# SELECT * FROM disthosts WHERE fqdn = 'host-with-jails.on.domain';
 id | fqdn | jailroot | updated | created | remarks
----+---------------------------+------------+----------------------------+----------------------------+---------
 19 | host-with-jails.on.domain | /usr/jails | 2016-07-30 13:48:57.442189 | 2016-07-30 13:48:57.431786 |
(1 row)

Time: 15,472 ms
pki_op=# INSERT INTO jails (name, disthost) VALUES('my_service_jail', 19);
INSERT 0 1
Time: 78,444 ms
pki_op=# DELETE FROM jails WHERE name = 'my_service_jail';
DELETE 1
Time: 18,563 ms

Note

A SELECT is used first to find the id of the
required Disthost.

Creating and deleting of other objects

Functions are provided to create other objects.

Management of cert instances

These are the command line options. Arguments are in capital letters:

 Usage: operate_serverPKI [options]

Server PKI 0.9.11

Options:
 -h, --help show this help message and exit

 Actions to issue and replace certificates.:
 -C, --create-certs Scan configuration and create all certs, which are not
 disabled or excluded. State will be "issued" of
 created certs. Action modifiers may be used to select
 a subset of certs to act on.
 -r REMAINING_DAYS, --renew-local-certs=REMAINING_DAYS
 Scan configuration for local certs in state deployed
 which will expire within REMAINING_DAYS days. Include
 these certs in a --create-certs operation. If combined
 with "--distribute-certs", do not create certs, but
 instead distribute certs, which would expire within
 REMAINING_DAYS days and are issued no longer than
 REMAINING_DAYS in the past.
 -S, --schedule-actions
 Scan configuration and schedule necessary actions of
 selected certs/hosts. This may trigger issuence or
 distribution of certs/TLSA-RRS. With this options "--
 create-certs" and "--distribute-certs" are ignored.
 Any state transitions may happen

 Actions to deploy or export certificates and deploy or delete DNS TLSA resource records.:
 -D, --distribute-certs
 Scan configuration and distribute (to their target
 host) all certs which are in state "issued" and
 currently valid and not disabled or excluded. Changes
 state to "deployed". Corresponding TLSA RR are also
 installed, if not suppressed with --no-TLSA-records-
 -K, --consolidate-certs
 Consolidate targets to be in sync with DB. This
 affects certs in state "deployed" and effectively re-
 distributes certs.
 -T, --consolidate-TLSAs
 Consolidate TLSA-RR to be in sync with DB. This
 affects certs in state "deployed" or "prepublished".
 -R, --remove-TLSAs Remove TLSA-RRs i.e. make them empty.
 -E CERT_SERIAL, --export-cert-and-key=CERT_SERIAL
 Export certificate and key with CERT_SERIAL to work
 directory. CERT_SERIAL may be obtained from DB (column
 "id" with command operate_serverPKI -n -v) This action
 may not be combined with other actions.

 Action modifiers, to select certificates or disthosts to act on.:
 -a, --all All certs in configuration should be included in
 operation, even if disabled.
 -i CERT_TO_BE_INCLUDED, --include=CERT_TO_BE_INCLUDED
 Specify, which cert to be included, even if disabled,
 in list of certs to be created or distributed. Is
 cumulative if multiple times provided.
 -e CERT_TO_BE_EXCLUDED, --exclude=CERT_TO_BE_EXCLUDED
 Specify, which cert to be excluded from list of certs
 to be created or distributed. Is cumulative if
 multiple times provided.
 -o ONLY_CERT, --only=ONLY_CERT
 Specify from which cert(s) the list of certs to be
 created or distributed. Is cumulative if multiple
 times provided.
 -s SKIP_HOST, --skip-disthost=SKIP_HOST
 Specify, which disthosts should not receive
 distributions. Is cumulative if multiple times
 provided.
 -l ONLY_HOST, --limit-to-disthost=ONLY_HOST
 Specify, which disthosts should receive distributions
 only (others are excluded). Is cumulative if multiple
 times provided.
 -N, --no-TLSA-records
 Do not distribute/change TLSA resource records.

 Maintenance and administrative actions.:
 -X, --encrypt-keys Encrypt all keys in DB.Configuration parameter
 db_encryption_key must point at a file, containing a
 usable passphrase.
 -Y, --decrypt-keys Replace all keys in the DB by their clear text
 version.Configuration parameter db_encryption_key must
 point at a file, containing a usable passphrase.
 -I, --issue-local-CAcert
 Issue a new local CA cert, used for issuing future
 local server/client certs.
 -Z, --register Register a new account at LetsEncrypt, This action may
 not be combined with other actions.
 -n, --check-only Do syntax check of configuration data. Produce a
 listing of cert meta and related cert instances if
 combined with --verbose. Listed certs may be selected
 with --only.
 -d, --debug Turn on debugging.
 -q, --quiet Be quiet on command line. Do only logging. (for cron
 jobs).
 -v, --verbose Be more verbose.
 -f CONFIG_FILE, --config_file=CONFIG_FILE
 Path of an alternate configuration file.

This script is run by cron (typically once an hour) like:

pki_op /usr/local/py_venv/PKI_OP_published/bin/operate_serverPKI -S -q -a

The action –renew-local-certs=REMAINING_DAYS displays a table with certs and
attributes, which would be renewed, if combined with the “-n” option, Like so:

+---------+-----------+-------+------------+----------+------+------+--------------+-------+---------+
| Subject | Cert Name | Type | authorized | Alt Name | TLSA | Port | Dist Host | Jail | Place |
+---------+-----------+-------+------------+----------+------+------+--------------+-------+---------+
| client | gal1_op | local | None | None | None | None | bh4.lrau.net | erdb4 | gal1_db |
+---------+-----------+-------+------------+----------+------+------+--------------+-------+---------+

Listing of cert meta and related cert instances may be obtained with the combination
of –check-only with –verbose. Listed certs may be selected with –only, Like so:

su -l pki_dev -c "/usr/local/py_venv/pki_dev_p37/bin/python /usr/local/py_venv/pki_dev_p37/bin/operate_serverPKI -v -n -o -a"
[operateCA [serverPKI-0.9.9] started with options all check_only verbose config_file(/Users/ajr/Projects/SERVICES/serverPKI/serverPKI/tests/conf/serverpki.conf)]
[3 certificates and CAs ['Local CA'] in DB]
[No syntax errors found in configuration.]
+---------+-----------+-------+------+-----------+------------+----------+------+------+-------------------------+------+---------+
| Subject | Cert Name | Type | Algo | OCSP m st | authorized | Alt Name | TLSA | Port | Dist Host | Jail | Place |
+---------+-----------+-------+------+-----------+------------+----------+------+------+-------------------------+------+---------+
client	client1	local	rsa	False	None	None	None	None	axels-imac.in.chaos1.de	None	place_1
CA	Local CA	local	rsa	False	None	None	None	None	None	None	None
CA	No cert	local	rsa	False	None	None	None	None	None	None	None
+---------+-----------+-------+------+-----------+------------+----------+------+------+-------------------------+------+---------+

+--------+-----------+-------+--------+-------+-----------+---------------------+---------------------+------+--+----------------------------+
| Serial | Cert Name | Type | State | CI CA | OCSP m st | not before | not after | ALGO | Hash | updated |
+--------+-----------+-------+--------+-------+-----------+---------------------+---------------------+------+--+----------------------------+
| 3 | Local CA | local | issued | 3 | False | 2020-07-04 00:00:00 | 2030-08-02 00:00:00 | rsa | CF32D82E6A0D36258AAF05CBE62E4834C7EA254FEC5E0A88B08B3C773F2D5989 | 2020-07-05 13:34:37.768547 |
| 4 | Local CA | local | issued | 4 | False | 2020-07-04 00:00:00 | 2030-08-02 00:00:00 | rsa | 69DF3EAB1FD2D55A9BA42C8F590757B63EFDCF63D16EB7F83EC02B6ACC5A5280 | 2020-07-05 13:34:38.527877 |
+--------+-----------+-------+--------+-------+-----------+---------------------+---------------------+------+--+----------------------------+

Displayed serial number may be used for exporting a key pair with –export.

State table of cert instances

[image: _images/States.png]

Index

 A
 | C
 | D
 | E
 | F
 | I
 | J
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_altname

 	add_cert

 	
 	add_service

 	add_target

C

 	
 	Certificates

 	Certificates.authorized_until

 	Certificates.disabled

 	Certificates.encryption_algo

 	Certificates.ocsp_must_staple

 	Certificates.type

 	Certinstances

 	Certinstances.not_after

 	Certinstances.not_before

 	
 	Certinstances.state

 	CertKeyData

 	CertKeyData.cert

 	CertKeyData.encryption_algo

 	CertKeyData.hash

 	CertKeyData.key

 	certs

 	certs_ids

 	created

D

 	
 	Disthosts

 	
 	Disthosts.FQDN

 	Disthosts.jailroot

E

 	
 	entity relation diagram

 	
 	ERD

F

 	
 	Functions

I

 	
 	id

 	
 	inst

J

 	
 	Jails

 	
 	Jails.disthost

 	Jails.name

M

 	
 	Management of cert instances

 	
 	Management of configuration

 	Model

O

 	
 	operate_serverPKI --register

 	
 	Operation

P

 	
 	Places

 	Places.cert_file_type

 	Places.cert_path

 	Places.chownboth

 	Places.gid

 	
 	Places.key_path

 	Places.mode

 	Places.name

 	Places.pglink

 	Places.reload_command

 	Places.uid

R

 	
 	remarks

 	remove_altname

 	remove_cert

 	remove_service

 	
 	remove_target

 	Revision

 	Revision.keysEncrypted

 	Revision.schemaVersion

S

 	
 	services

 	Services.name

 	Services.port

 	Services.TLSAprefix

 	
 Subject.certificate

 	
 see Certificates

 	
 	Subjects

 	Subjects.certificate

 	Subjects.isAltName

 	Subjects.name

 	Subjects.type

T

 	
 	Tables

 	Targets

 	Targets.certificate

 	
 	Targets.distHost

 	Targets.jail

 	Targets.place

 	The database

U

 	
 	updated

V

 	
 	Views

 _static/ajax-loader.gif

_images/States.png
Triggers for state transitions and actions

init during cert.Certificate.__init__ ()

Issued local issue_local.issue_local_cert(cert-meta) done
issue LE issue_ILE.issue_LE_cert(cert-meta) done
distributed certdist.deployCerts(certs) done
dis'd_TLSA certdist.deployTLSA(certs) done

Actions

delete delete cert instance in DB
iIssue_local issue_local.issue_local_cert(cert-meta)
issue_LE issue_|LE.issue_LE_cert(cert-meta)
distribute certdist.deployCerts(certs)
distr_TLSA certdist.deployCerts(certs)

Dates, Times and Time Deltas

Certificate roles

NVB not valid before (issue date) AC active certificate
NVA not valid after FC future certificate (LE only)
RNT(D) renew time (delta) CL local certificate O
PPT(D) pre-publish time (delta) CLE LE certificate

console issue > CL >

create local reserved o

distribute
cert
T~ oL
distribute —— ¥\ deployed

cert

CL
issued

issue LE e
w delete
delete
reserved delete N
mail /
schedule admin to
iIssued
/ local cert
delete
issue if failed

LE

4

distribute
expired 2nd cert
and 1 TLSA

N

—>

delete

if failed
distribute
certand —®| deployed
1 TLSA

distribute >
o K

| deployed

States of serverPKI

created 2016-08-02 by

y

Axel.Rau@Chaos1.DE

released 2016-08-08

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/ERD.png
Subjects
(name)
>certificate
type
ISAltName

certname or
Altnames

Certificateé
type

describe

Certinstances
()
>certificate
state
not_before
not_after

>cacert
ocsp_must_stable

remarks
updated

are
stored in

CertKeyData
(hash)
> Certlnstance
encryption_algo
cert
key
created

require
TLSAs

are
deployed
to

Revision
(SchemaVersion)
keysEncrypted
Services
(name, port)
TLSAprefix
Targets
[certificate, Places
_ are
distHost, located at (name)
jail,
place]
are
located at
are
located on
Jails
(name)
| >distHost
DistHosts hosting
(fqdn)
jailroot

() unique key
[] unique key of foreign keys
> foreign key

ERD of serverPKI

created 2016-06-16 by

Axel.Rau@Chaosi1.DE
released 2017-07-17
updated 2020-05-02

_static/file.png

nav.xhtml

 Table of Contents

 		
 Documentation of serverPKI

 		
 serverPKI

 		
 What

 		
 Prerequisites

 		
 Sponsored

 		
 Changelog

 		
 0.9.0 (2017-07-18)

 		
 0.9.1 (2017-07-28)

 		
 0.9.2 (2018-03-19)

 		
 0.9.3 (2019-02-11)

 		
 0.9.4 (2019-02-21)

 		
 0.9.6 (2020-03-11)

 		
 0.9.10 (2020-08-06)

 		
 0.9.11 (2020-08-11)

 		
 Installation and Configuration

 		
 Installation

 		
 Configuration

 		
 Pathes

 		
 X509atts

 		
 DBAccount

 		
 Misc

 		
 Tutorial

 		
 Setting up encrypted key storage

 		
 Creating our first local certificate

 		
 Creating our first Let’s Encrypt certificate

 		
 The database

 		
 Model

 		
 Tables

 		
 Views

 		
 Functions

 		
 Operation

 		
 Management of configuration

 		
 Creating and deleting Disthosts

 		
 Creating and deleting Jails

 		
 Creating and deleting of other objects

 		
 Management of cert instances

 		
 State table of cert instances

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

